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A parametrized family of iterative methods for the planar-geometry transport equa-
tion is proposed. This family is a generalization of previously proposed nonlinear
flux methods. The new methods are derived by integrating the 1D transport equation
over−1≤ µ ≤ 0 and 0≤ µ ≤ 1 with weight|µ|α, α ≥ 0. Both nonlinear and linear
methods are developed. The convergence properties of the proposed methods are
studied theoretically by means of a Fourier stability analysis. The optimum value of
α that provides the best convergence rate is derived. We also show that the conver-
gence rates of nonlinear and linear methods are almost the same. Numerical results
are presented to confirm these theoretical predictions.c© 2001 Academic Press
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1. INTRODUCTION

To solve the particle transport equation, iteration methods must be utilized, due to the
integro-differential nature of this equation. For many highly scattering problems, the source
iteration algorithm converges slowly and requires an inordinate amount of computer time.
To accelerate these iterations, nonlinear projective-iteration (NPI) methods [1, 2] have been
developed; these are also known as projected discrete ordinates (PDO) methods [3]. Among
these methods are the quasi-diffusion (QD) method [4], a method based on the Yvon–
Mertens approximation [5], the second-moment method [6], the first-flux (FF) (averaged
flux) method [7–9], second-flux (SF) method [10], and nonlinear S2-like methods [11].

The NPI (PDO) methods have the following features:

1. Most of these methods are nonlinear.
2. Each method is defined by a system of equations consisting of two parts: the “transport”

(“high-order”) and “low-order” (moments) equations.
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3. The low-order equations are a set of equations for various moments of the distribution
function over angles and energy.

4. These methods converge very rapidly.
5. The nonlinear methods contain special functionals that are weakly dependent on the

transport solution. This results in fast convergence rates.
6. For stability, there is no need to discretize the transport and low-order equations con-

sistently. These independent discretizations may make it possible to improve the accuracy
of the numerical solution.

We note that the QD method has also been successfully used for solving upscattering
problems [12].

In general, the discretized equations of an NPI (PDO) method yield two scalar flux solu-
tions. One is generated by the high-order problem, the other by the low-order problem. The
accuracies of these two scalar fluxes depend on their spatial discretizations. A “consistent”
discretization [13, 14] results in the scalar fluxes being identical, in which case the NPI
(PDO) methods are pure acceleration methods (the converged accelerated and unacceler-
ated solutions are identical on any grid). Independent discretizations [2] generally give rise
to scalar fluxes that differ by a truncation error. Thus, an NPI (PDO) method approximated
by independent schemes is a rapidly converging iterative method, but not a pure accelera-
tion method (the solution is altered by a small amount). However, if the size of the mesh
cells tends to zero and the difference schemes for the transport and low-order equations
converge, then these two scalar fluxes tend to each other and to the exact solution of the
discrete-ordinates equations.

The low-order equations of the QD and “flux” methods are of different forms. An
attractive feature of the flux methods is that the low-order equations are simplified trans-
port equations, which can be discretized using known transport differencing schemes.
This fact presents an opportunity toimprove the accuracy of the numerical solution of
a given discretization scheme for the high-order transport equation. This can be done
if the discretization scheme for the low-order equations is chosen to be more accurate
than the original discretization scheme chosen for the high-order equations. Employing
such inconsistent discretization schemes leads to a numerical algorithm in which the
converged scalar fluxes are (i) more accurate than the original discrete solution, and (ii)
are obtained much more efficiently. Consistent discretizations do not possess the option
of improving the accuracy of the solution. This issues was discussed and studied in [1,
2, 11].

In this paper, we present a generalization of the FF and SF methods, which, for single-
group problems with isotropic scattering, are obtained by integrating the transport equation
over the half-ranges−1≤µ < 0 and 0< µ≤ 1, with weights 1 andµ, respectively (µ is
the direction cosine). These methods are nonlinear. (In a variant of the flux methods, useful
for electron transport problems with highly anisotropic scattering, the transport equation is
integrated over a number of subintervals of−1≤µ≤ 1. [15]).

Here, we develop an expanded nonlinear family of “α-weighted” iteration methods that
use weights|µ|α, whereα is any nonnegative constant. Ifα = 0, the FF method results,
and if α = 1 the SF method results. For other values ofα, the iteration methods are new.
We derive both nonlinear and linear versions of these methods, which have a similar math-
ematical structure to the FF and SF methods (the low-order equations are a simplified
transport equation). Since the resulting iteration schemes qualify as NPI (PDO) methods,
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they possess the features described above. Thus, they should have the capacity to produce
iterative solutions much more efficiently than by the unaccelerated Source Iteration proce-
dure, and they should have the capacity to produce more accurate solutions under the right
circumstances.

In numerical simulations described in this paper, we use the Step Characteristic (SC) spa-
tial differencing scheme [16] for the high-order transport equation, and the more accurate
Linear Discontinuous (LD) scheme [17–19] for the low-order equations. The (high-order)
SC method is used in several common reactor physics codes. This discretization method
has many advantages: it is second-order accurate, and it produces positive and monotonic
(nonoscillatory) solutions. However, it is not accurate for diffusive problems with spa-
tial cells that are not optically thin [20]. The (low-order) LD method is more accurate
and expensive than SC, but it performs well in diffusive problems with spatial cells that
are not optically thin [19]. In this paper, we demonstrate that the scalar fluxes obtained
by the resultingα-weighted methods are obtained efficiently, and are more accurate than
the pure SC solutions for diffusive problems in which the spatial cells are not optically
thin.

This paper is focused on a description of the proposed methods and a consideration of
their basic features, namely, stability properties. As a result of theoretical studies, we have
determined the nonlinear and linear methods with the optimal values ofα (i.e., with the
fastest convergence rates). To perform this study, we used a Fourier stability analysis that
has been successfully employed for the analysis of various other linear iteration schemes for
transport problems [21, 22]. To study nonlinear methods, we analyze the nonlinear methods
after they are linearized around a certain simple solution [23]. We confirm our theoretical
predictions by numerical results.

The remainder of this paper is organized as follows. In Section 2 we formulate the
proposed methods. In Section 3 we study the methods in differential form by means of
the Fourier analysis and show that the methods with prescribed values ofα have par-
ticular properties. In Section 4 we present difference schemes for the considered meth-
ods. In Section 5 we perform a theoretical and numerical investigation of the discretized
methods applying the Fourier stability analysis. We conclude with a discussion in
Section 6.

2. FORMULATION OF α-WEIGHTED METHODS

2.1. Nonlinear Methods

Let us consider the slab geometry transport problem

µ
∂

∂x
ψ(x, µ)+ σt (x)ψ(x, µ) = 1

2

(
σs(x)

1∫
−1

ψ(x, µ′) dµ′ + Q(x)

)
, − 1≤µ≤ 1, (1)

ψ(0, µ) = ψ(0,−µ), 0≤ µ < 1, (2)

ψ(L , µ) = F(µ), −1≤ µ < 0. (3)

Here ψ(x, µ) is the angular flux,σt and σs are the total and scattering cross sections,
respectively, andQ is a source.
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To solve this problem by anα-weighted method, we letα ≥ 0 be a user-defined constant,
and we define the quantities:

φ−(x) =
0∫
−1

ψ(x, µ) dµ, (4)

φ+(x) =
1∫

0

ψ(x, µ) dµ, (5)

φ(x) =
1∫
−1

ψ(x, µ) dµ, (6)

A−(x) = (α + 1)
∫ 0
−1 |µ|α+1ψ(x, µ) dµ∫ 0
−1 ψ(x, µ) dµ

, (7)

A+(x) = (α + 1)
∫ 1

0 µα+1ψ(x, µ) dµ∫ 1
0 ψ(x, µ) dµ

, (8)

B−(x) = (α + 1)
∫ 0
−1 |µ|αψ(x, µ) dµ∫ 0
−1 ψ(x, µ) dµ

, (9)

B+(x) = (α + 1)
∫ 1

0 µαψ(x, µ) dµ∫ 1
0 ψ(x, µ) dµ

. (10)

Operating on Eq. (1) by(α + 1)
∫ 1

0 µα(·) dµ and(α + 1)
∫ 0
−1 |µ|α(·) dµ, and using the

functionals defined in Eqs. (7)–(10), we obtain

− d

dx
A−φ− + (σt B

− − 0.5σs)φ
− = 0.5(σsφ

+ + Q), (11)

d

dx
A+φ+ + (σt B

+ − 0.5σs)φ
+ = 0.5(σsφ

− + Q). (12)

Likewise, operating on Eq. (2) by
∫ 1

0 (·) dµ and on Eq. (3) by
∫ 0
−1(·) dµ, we obtain

φ+(0) = φ−(0), (13)

φ−(L) = φ∗, (14)

where

φ∗ =
0∫
−1

F(µ) dµ.

Theα-weighted nonlinear (α-WN) method is defined by Eqs. (1)–(14). This set of equa-
tions is solved by the iteration scheme

µ
∂

∂x
ψ(k+1/2) + σtψ

(k+1/2) = 0.5
(
σsφ

(k) + Q
)
, (15)
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ψ(k+1/2)(0, µ) = ψ(k+1/2)(0,−µ), (16)

ψ(k+1/2)(L , µ) = F(µ), −1≤ µ < 0, (17)

A−
(k+1/2) = (α + 1)

∫ 0
−1 |µ|α+1ψ(k+1/2)dµ∫ 0
−1 ψ(k+1/2) dµ

, (18)

A+
(k+1/2) = (α + 1)

∫ 1
0 µα+1ψ(k+1/2)dµ∫ 1

0 ψ(k+1/2) dµ
, (19)

B−
(k+1/2) = (α + 1)

∫ 0
−1 |µ|αψ(k+1/2)dµ∫ 0

−1 ψ(k+1/2) dµ
, (20)

B+
(k+1/2) = (α + 1)

∫ 1
0 µαψ(k+1/2)dµ∫ 1

0 ψ(k+1/2) dµ
, (21)

− d

dx
A−

(k+1/2)

φ−
(k+1) + (σt B

−(k+1/2) − 0.5σs
)
φ−

(k+1) = 0.5
(
σsφ
+(k+1) + Q

)
(22)

d

dx
A+

(k+1/2)

φ+
(k+1) + (σt B

+(k+1/2) − 0.5σs
)
φ+

(k+1) = 0.5
(
σsφ
−(k+1) + Q

)
, (23)

φ(k+1) = φ+
(k+1) + φ−

(k+1)

, (24)

φ+
(k+1)

(0) = φ−
(k+1)

(0), (25)

φ−
(k+1)

(L) = φ∗, (26)

wherek is the iteration index. For the initial iteration,φ−
(0)

andφ+
(0)

are determined by
solving the low-order problem (22)–(26) withA± = α+ 1

α+ 2 and B± = 1. Thus, the above
nonlinear iteration scheme consists of three parts:

1. A conventional transport sweep to calculateψ(k+1/2)(x, µ) (Eqs. (15)–(17)).
2. The calculation of the functionalsA±

(k+1/2)

(x) and B±
(k+1/2)

(x) from ψ(k+1/2)(x, µ)

(Eqs. (18)–(21)).
3. Solving a low-order transport problem (Eqs. (22)–(26)) forφ±

(k+1)

(x).

For α = 0, the above method reduces to the FF method [8, 9], and forα = 1 it reduces to
the SF method [10]. Thus, the FF and SF methods are special cases of theα-WN methods.

2.2. Linear Methods

Here we shall derive linear versions of the nonlinear methods developed above. We again
consider problem (1)–(3), and we operate by(α+ 1)

∫ 1
0 µα(·) dµand(α+ 1)

∫ 0
−1 |µ|α(·) dµ

to obtain

−(α + 1)
d

dx

(∫ 0

−1
|µ|α+1ψ(x, µ) dµ

)
+ (α + 1)σt (x)

∫ 0

−1
|µ|αψ(x, µ) dµ

= 0.5(σs(x)(φ−(x)+ φ+(x))+ Q(x)), (27)

(α + 1)
d

dx

(∫ 1

0
µα+1ψ(x, µ) dµ

)
+ (α + 1)σt (x)

∫ 1

0
µαψ(x, µ) dµ

= 0.5(σs(x)(φ−(x)+ φ+(x))+ Q(x)). (28)
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Then, we define

P−(x) =
0∫
−1

[(α + 1)|µ|α − 1]ψ(x, µ) dµ, (29)

P+(x) =
1∫

0

[(α + 1)µα − 1]ψ(x, µ) dµ, (30)

R−(x) =
0∫
−1

[(α + 2)|µ|α+1− 1]ψ(x, µ) dµ, (31)

R+(x) =
1∫

0

[(α + 2)µα+1− 1]ψ(x, µ) dµ, (32)

σ̃ = σt − 0.5σs, (33)

γ = α + 1

α + 2
. (34)

Rearranging, we obtain

−γ
dφ−

dx
+ σ̃ φ− = 1

2
(σsφ

+ + Q)− σt P
− + γ

d R−

dx
, (35)

γ
dφ+

dx
+ σ̃ φ+ = 1

2
(σsφ

− + Q)− σt P
+ − γ

d R+

dx
. (36)

Note that we have added terms to both sides of the equations, and that the last two terms on
the right sides of Eqs. (35) and (36) vanish ifψ(x, µ) is constant forµ < 0 and constant for
µ > 0. The boundary conditions for the low-order equations are the same as in theα-WN
methods; i.e.,

φ+(0) = φ−(0), (37)

φ−(L) = φ∗. (38)

Thus, theα-weighted linear (α-WL) methods are defined by Eqs. (1)–(3) and (29)–(38).
The iteration scheme for theα-WL methods is similar to that for theα-WN methods. It
consists of three parts:

1. A transport sweep to calculateψ(k+1/2)(x, µ) (Eqs. (1)–(3)).
2. The calculation of the functionalsP±

(k+1/2)

(x) and R±
(k+1/2)

(x) from ψ(k+1/2)(x, µ)

(Eqs. (29)–(32)).
3. Solving a low-order transport problem (Eqs. (35)–(38)) forφ±

(k+1)

(x).

For the initial iteration,φ−
(0)

andφ+
(0)

are determined by solving the low-order problem
(35)–(38) withP± = 0 andR± = 0.
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3. ANALYSIS OF THE METHODS IN DIFFERENTIAL FORM

3.1. Linearizedα-Weighted Nonlinear Methods

In order to study the convergence properties of the proposed nonlinear methods, we shall
linearize them [23]. We consider an infinite medium, constant cross section, and flat source
problem. The exact solution of this problem is simply

ψ(x, µ) = Q

2σa
, whereσa = σt − σs. (39)

We assume that the iterations begin with an initial estimate that is close to this exact solution,
and we assume that all succeeding iterations remain close to this solution. Consequently,
we set

ψ(k+1/2)(x, µ) = Q

σa

(
1

2
+ εξ (k+1/2)(x, µ)

)
, (40)

φ±
(k)

(x) = Q

σa

(
1

2
+ εζ±

(k)

(x)

)
, (41)

ψ(k)(x) = Q

σa

(
1+ εζ (k)(x)

)
, (42)

whereε ¿ 1. The rate at whichξ (k+1/2)(x, µ), ζ±
(k)

(x) andζ (k)(x) tend to zero gives the
convergence rate of the method. If these quantities grow rather than decay, then the method
is unstable.

To analyze theα-WN methods, we introduce the ansatz, (40)–(42), for the angular and
scalar fluxes into Eqs. (15) and (22)–(24). Then we expand in powers ofε and drop the
O(ε2) terms. The O(1) terms are automatically satisfied and the O(ε) equations yield

µ
∂

∂x
ξ (k+1/2) + σtξ

(k+1/2) = 0.5σsζ
(k), (43)

−γ
d

dx
ζ−

(k+1) + σ̃ ζ−
(k+1) = 0.5σsζ

+(k+1)− σtη
−(k+1/2)
0 + γ

d

dx
η
−(k+1/2)
1 , (44)

γ
d

dx
ζ+

(k+1) + σ̃ ζ+
(k+1) = 0.5σsζ

−(k+1)− σtη
+(k+1/2)
0 − γ

d

dx
η
+(k+1/2)
1 , (45)

ζ (k+1) = ζ−
(k+1) + ζ+

(k+1)

, (46)

η−(k+1/2)
n (x) =

0∫
−1

[(α + 1+ n)|µ|α+n − 1]ξ (k+1/2)(x, µ) dµ, n = 0, 1. (47)

η+(k+1/2)
n (x) =

1∫
0

[(α + 1+ n)µα+n − 1]ξ (k+1/2)(x, µ) dµ, n = 0, 1. (48)

The system of the linearized equations consists of Eqs. (43)–(48). Using the same ap-
proach, we obtain equations for the variationsξ , ζ±, ζ for theα-WL methods. The result
is exactly Eqs. (43)–(48). Thus, the linear and linearized methods are identical in form and
have identical convergence properties.
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TABLE I

Spectral Radii versusα for c = 1

Method α ρ

First-flux 0 0.3333
Optimal 0.128 0.1865
DSA-like 0.366 0.2247
Second-flux 1 0.3105

3.2. Fourier Analysis

We now study the convergence of the linear and linearized nonlinear methods by means
of a Fourier analysis. Let us consider a model infinite-medium problem with constant cross
sections. We introduce the Fourier ansatz,

ξ (k+1/2)(x, µ) = a(µ)ωkei λσt x, (49)

ζ±
(k)

(x) = ν±ωkei λσt x, (50)

ζ (k)(x) = ωkei λσt x (51)

into Eqs. (43)–(48) and obtain a system of equations fora(µ), ν±, andω. Solving this
system for the caseσt = 1 andσs = c, we obtain

ω = ω(λ) = c

(
1

λ2γ 2+ 1− c

)[
(1+ λ2γ 2)

tan−1 λ

λ
− 1

]
. (52)

It is clear that|ω| is maximized forc = 1. We note that ifγ = 1√
3
, i.e.,α = αDSA, where

αDS A= 2−√3√
3− 1

≈ 0.366, (53)

then Eq. (52) reduces to exactly the formula that applies to DSA and the linearized quasi-
diffusion methods. Hereafter, we refer to theα-WN andα-WL methods withα = αDSA as
DSA-like methods.

The spectral radius is defined by

ρ = sup
λ

|ω(λ)|. (54)

The values ofρ are tabulated forc = 1 and four values ofα in Table I. The spectral radius
is minimized forα ≈ 0.128.

These theoretical results show that the performance of various methods depends on
the choice ofα. However, in practical simulations, the characteristics of each method
also depend on the choice of a spatial discretization and an angular quadrature set. In the
following, we consider the proposed methods in discretized form.

4. DISCRETIZATION OF α-WEIGHTED METHODS

There are two general approaches for approximation of the equations of theα-weighted
methods: consistent and independent schemes [2, 13, 14]. The consistent schemes guarantee
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the stability of iteration methods for the transport equation [25]. The study of the QD and flux
methods showed that it is not necessary to discretize low-order equations of these methods
consistently with the transport equation [2, 4, 10, 11, 24], whereas the DSA method requires
consistent discretization for stability of iterations [14, 21]. It was theoretically shown that the
QD method, approximated by means of some independent difference schemes, converges
on a class of model problems, provided that the initial guess is sufficiently close to the
converged solution [23]. However, there is no general theorem in this regard for this class of
methods. Hence, the stability analysis of theα-weighted methods discretized by independent
schemes is of particular interest in the study of their convergence properties.

We now discretize spatially theα-weighted methods using independent differencing
schemes for the transport and low-order equations. For the low-order equations, we choose
a linear discontinuous (LD) method [17–19]. We introduce a spatial mesh, selected so
that xj+1/2 (1≤ j ≤ J) correspond to the mesh edges, wherex1/2 = 0 andxJ+1/2 = L,
xj= 0.5(xj+1/2+ xj−1/2)are cell centers. The mesh widths are given byh j = xj+1/2− xj−1/2.
Integer± 1

2 subscripts refer to cell-edge quantities, and integer subscripts refer to cell-
average quantities. The low-order equations of theα-WN method, Eqs. (11)–(14),
become

−(A−j+1/2φ
−
j+1/2− A−j−1/2φ

−
j−1/2

)+ (σt, j B
−
j − 0.5σs, j )φ

−
j h j = 0.5h j (σs, j φ

+
j + Qj ),

(55)

A+j+1/2φ
+
j+1/2− A+j−1/2φ

+
j−1/2+ (σt, j B

+
j − 0.5σs, j )φ

+
j h j = 0.5h j (σs, j φ

−
j + Qj ), (56)

−θ j
(

A−j+1/2φ
−
j+1/2+ A−j−1/2φ

−
j−1/2− 2A−j φ−j

)+ (σt, j {B̂−φ−} j − 0.5σs, j φ̂
−
j )h j

= 0.5h j (σs, j φ̂
+
j + Q̂ j ), (57)

θ j
(

A+j+1/2φ
+
j+1/2+ A+j−1/2φ

+
j−1/2− 2A+j φ+j

)+ (σt, j {B̂+φ+} j − 0.5σs, j φ̂
+
j )h j

= 0.5h j (σs, j φ̂
−
j + Q̂ j ), (58)

φ+1/2 = φ−1/2, (59)

φ−J+1/2 = φ∗, (60)

where

φ̂−j = φ−j − φ−j−1/2, (61)

φ̂+j = φ+j+1/2− φ+j , (62)

{B̂−φ−} j = B−j φ−j − B−j−1/2φ
−
j−1/2, (63)

{B̂+φ+} j = B+j+1/2φ
+
j+1/2− B+j φ+j , (64)

A±j = 0.5
(

A±j+1/2+ A±j−1/2

)
, (65)

B±j = 0.5
(
B±j+1/2+ B±j−1/2

)
, (66)

Q̂ j = 6

h2
j

x j+1/2∫
xj−1/2

(x − xj )Q(x) dx. (67)

Equations (55)–(58) are obtained by integrating Eqs. (11) and (12) over thej th cell with
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weights 1 andx − xj . Hereθ j is a “lumping” parameter;θ j = 3 corresponds to the standard
LD method;θ j = 1 corresponds to a lumped LD method [19]. The lumped scheme is often
used for optically thick cells.

The discretized low-order equations of theα-WL methods are defined by

−γ
(
φ−j+1/2− φ−j−1/2

)+ σ̃ j h j φ
−
j = 0.5h j (σs, j φ

+
j + Qj )− σt, j h j P−j

+ γ
(
R−j+1/2− R−j−1/2

)
, (68)

γ
(
φ+j+1/2− φ+j−1/2

)+ σ̃ j h j φ
+
j = 0.5h j (σs, j φ

−
j + Qj )− σt, j h j P+j

− γ
(
R+j+1/2− R+j−1/2

)
, (69)

−θ j γ
(
φ−j+1/2+ φ−j−1/2− 2φ−j

)+ σ̃ j h j φ̂
−
j = 0.5h j (σs, j φ̂

+
j + Q̂ j )− σt, j h j P̂−j

+ θ j γ
(
R−j+1/2− R−j−1/2− 2R−j

)
, (70)

θ j γ
(
φ−j+1/2+ φ−j−1/2− 2φ+j

)+ σ̃ j h j φ̂
+
j = 0.5h j (σs, j φ̂

−
j + Q̂ j )− σt, j h j P̂+j

− θ j γ
(
R+j+1/2+ R+j−1/2− 2R+j

)
, (71)

φ+1/2 = φ−1/2, (72)

φ−J+1/2 = φ∗, (73)

where

φ̂−j = φ−j − φ−j−1/2, (74)

φ̂+j = φ+j+1/2− φ+j , (75)

P̂−j = P−j − P−j−1/2, (76)

P̂+j = P+j+1/2− P+j , (77)

P±j = 0.5
(
P±j+1/2+ P±j−1/2

)
, (78)

R±j = 0.5
(
R±j+1/2+ R±j−1/2

)
. (79)

The approximation of the right-hand sides was performed following the ideas of the LD
method, so that the discretized linear and linearized methods are of the same form. Note
that the terms with factorθ j in the right-hand sides of Eqs. (70) and (71) vanish because of
Eqs. (79).

To solve the high-order transport equation in the framework of theα-WN methods,
a positive monotone differencing scheme is necessary to maintain the stability. For this
purpose, we choose the step characteristic (SC) method, which can be written [16]

µm
(
ψm, j+1/2− ψm, j+1/2

)+ σt, j h j
(
Tm, j ψm, j−1/2+ (1− Tm, j )ψm, j+1/2

)
= 0.5h j (σs, j φ j + Qj ), (80)

Tm, j = 1

τm, j
− 1

eτm, j − 1
, whereτm, j = σt, j h j

µm
. (81)

The subscriptm denotes the discrete ordinates number, whereµm are the direction cosines
(m= 1, . . . , M). For boundary conditions, we prescribe the incident angular flux on the
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right boundary,

ψm,J+1/2 = Fm, µm < 0, (82)

and for a reflective left boundary, we prescribe

ψm,1/2 = ψn,1/2, for µm = −µn. (83)

The same scheme is used for theα-WL methods.
To calculate the functionalsA±, B±, P±, andR±, one should use a quadrature set with

angular weightswm that satisfy the conditions:∑
m∈M−

wm =
∑

m∈M+
wm = 1, (84)

where

M− = {m : µm ≤ 0}, M+ = {m : µm ≥ 0}. (85)

The approximation of these functionals will be discussed later.
Note that in optically thick diffusion regions, the SC method generates an isotropic

angular flux, and this results in correct values of functionals. For the low-order equations of
theα-weighted methods, the LD discretization gives rise to accurate approximation of the
diffusion equation in optically thick regions in case ofα = 0.366 (i.e., DSA-like methods).

5. ANALYSIS OF THE DISCRETIZED METHODS

5.1. Linearization

To study the convergence properties of the discretized nonlinear methods, we use the
same approach as above. We linearize the discretized equations, considering again an infinite
medium, constant cross section, and a flat source problem with a uniform mesh. The exact
solution of this problem is

ψm, j+1/2 = Q

2σa
, whereσa = σt − σs. (86)

We assume that the iterations begin with an initial estimate that is close to the exact solution
(86). Thus, we set

ψ
(k+1/2)
m, j+1/2 =

Q

σa

(
1

2
+ εξ

(k+1/2)
m, j+1/2

)
, (87)

φ±
(k)

j+1/2 =
Q

σa

(
1

2
+ εζ±

(k)

j+1/2

)
, (88)

φ±
(k)

j = Q

σa

(
1

2
+ εζ±

(k)

j

)
, (89)

φ
(k)
j =

Q

σa

(
1+ εζ

(k)
j

)
, (90)

whereε ¿ 1.
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To analyze theα-WN methods, we introduce the ansatz (87)–(90) for the angular and
scalar fluxes into Eqs. (55)–(67), (80), and (81), taking into account the iteration scheme
(15)–(26). Then we expand the resulting equations in powers ofε, and drop the O(ε2)

terms. In the transport differencing scheme (80) and (81), the O(1) terms are automatically
satisfied and the O(ε) equations yield

µm

(
ξ

(k+1/2)
m, j+1/2− ξ

(k+1/2)
m, j−1/2

)
+ σt h

(
Tmξ

(k+1/2)
m, j−1/2+ (1− Tm)ξ

(k+1/2)
m, j+1/2

)
= 0.5σshζ

(k)
j . (91)

In the low-order equations, the O(1) terms cancel out, provided that the quadrature set
satisfies the following conditions:∑

m∈M−
|µm|αwm =

∑
m∈M+

µα
mwm = 1

α + 1
, for anyα. (92)

To circumvent this strong restriction on the quadrature set, we replace the factorα + 1 in
the functionalsA± andB± by the factor

α0 =
( ∑

m∈M+
µα

mwm

)−1

, (93)

that is, by an approximation ofα + 1 by means of the utilizing quadrature set. We also
consider quadrature sets that meet the symmetry condition∑

m∈M−
|µm|αwm =

∑
m∈M+

µα
mwm. (94)

Thus, we have

A±j+1/2 =
α0
∑

m∈M±|µm|α+1ψm, j+1/2wm∑
m∈M±ψm, j+1/2wm

, (95)

B±j+1/2 =
α0
∑

m∈M±|µm|αψm, j+1/2wm∑
m∈M±ψm, j+1/2wm

. (96)

As a result, the O(1) terms cancel out and we obtain the O(ε) equations

−β1

(
ζ−

(k+1)

j+1/2 − ζ−
(k+1)

j−1/2

)
+ σ̄hζ−

(k+1)

j − 0.5σshζ+
(k+1)

j

= 0.5
(
η−

(k+1/2)

1, j+1/2− η−
(k+1/2)

1, j−1/2− 0.5σt h
(
η−

(k+1/2)

0, j−1/2+ η−
(k+1/2)

0, j+1/2

))
, (97)

β1

(
ζ+

(k+1)

j+1/2 − ζ+
(k+1)

j−1/2

)
+ σ̃hζ+

(k+1)

j − 0.5σshζ−
(k+1)

j

= 0.5
(
η+

(k+1/2)

1, j−1/2− η+
(k+1/2)

1, j+1/2− 0.5σt h
(
η+

(k+1/2)

0, j−1/2+ η+
(k+1/2)

0, j+1/2

))
, (98)

−θβ1

(
ζ−

(k+1)

j+1/2 + ζ−
(k+1)

j−1/2 − 2ζ−
(k+1)

j

)
+ σ̃h

(
ζ−

(k+1)

j − ζ−
(k+1)

j−1/2

)
− 0.5σsh

(
ζ+

(k+1/2)

j+1/2 − ζ+
(k+1)

j

)
= 0.25σt h

(
η−

(k+1/2)

0, j−1/2− η−
(k+1/2)

0, j+1/2

)
, (99)

θβ1

(
ζ+

(k+1)

j+1/2 + ζ+
(k+1)

j−1/2 − 2ζ+
(k+1)

j

)
+ σ̃h

(
ζ+

(k+1)

j+1/2 − ζ+
(k+1)

j

)
− 0.5σsh

(
ζ−

(k+1)

j − ζ−
(k+1)

j−1/2

)
= 0.25σt h

(
η+

(k+1/2)

0, j−1/2− η+
(k+1/2)

0, j+1/2

)
, (100)

ζ
(k+1)
j = ζ−

(k+1)

j + ζ+
(k+1)

j , (101)
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where, forn = 0 and 1,

η±
(k+1/2)

n, j+1/2 = 2
∑

m∈M±
(α0|µm|α+n − βn)ξ

(k+1/2)
m, j+1/2wm, (102)

αn =
( ∑

m∈M+
µα+n

m wm

)−1

, (103)

β = α0

αn
. (104)

Similarly, we derive the equations for variation of difference solutions from exact one
(Eq. (86)) for the discretizedα-WL methods. In this case, the same condition (92) must be
satisfied to cancel out the O(1) terms. Therefore, the procedure described above is applied,
and the functionalsP± andR± are calculated in the following form:

P±j+1/2 =
∑

m∈M±
(α0|µm|α − 1)ψm, j+1/2wm. (105)

R±j+1/2 =
∑

m∈M±
(α1|µm|α+1− 1)ψm, j+1/2wm. (106)

As a result, the O(1) terms are satisfied. To make the resulting equations of the nonlinear and
linear methods consistent with each other, we also replaceγ (Eq. (34)) withβ1 [Eq. (104)] in
the low-order equations of theα-WL methods (Eqs. (68)–(71)). Finally, the O(ε) equations
of the discretizedα-WL methods are identical to the O(ε) equations of the linearizedα-WN
methods (Eqs. (97)–(104)).

5.2. Fourier Analysis

We now apply a Fourier analysis to the discretized equations of the considered methods
for a model infinite medium problem with constant cross sections and a uniform spatial
mesh. We choose the following Fourier ansatz:

ξ
(k+1/2)
m, j+1/2 = αmωkei λσt x j+1/2, (107)

ζ±
(k)

j+1/2 = ν±ωkei λσt x j+1/2, (108)

ζ±
(k)

j = t±ωkei λσt x j , (109)

ζ
(k)
j = ωkei λσt x j . (110)

Introducing the Fourier ansatz into the equations (91) and (97)–(104), we obtain a system
of equations forαm, ν±, t±, andω. Solving the resulting system forω, we obtain

ω = ω1

ω2
, (111)

where

ω1 = σtσsh
2
[
2β1δt

(
2δaS1+ σ 2

t h2S0
)
tan2χ + (δtδa + v tan2χ)

× (σ 2
t h2S0+ 2(Z1− β1Z0) tan2χ

)]
, (112)
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ω2 = −δtδaσtσah2− v(2β1δt + σtσah2) tan2χ, (113)

χ = 0.5λαt h, (114)

δa = 2β1θ + σah, (115)

δt = 2β1θ + σt h, (116)

v = 2β1θδa + σtσah2, (117)

and forn = 0 and 1,

Zn =
∑

m∈M+
gn,m(2µm + σt h(1− 2Tm))wm, (118)

Sn =
∑

m∈M+
gn,mwm, (119)

gn,m = α0µ
α+n
m − βn

σ 2
t h2+ (2µm + σt h(1− 2Tm))2 tan2χ

. (120)

The spectral radius is defined by

ρ = sup
0≤χ≤ π

2

|ω(χ)|. (121)

The spectral radius determines the stability of the considered methods.

5.3. Numerical Results

To obtain the spectral radii for various infinite medium problems, we evaluate|ω| using
Eqs. (111)–(120). Table II contains theoretical estimates of the spectral radiiρ for theα-WN
andα-WL methods versusσt h andα, for c = 1, wherec = σs/σt is the scattering ratio.
To calculateω, we use the doubleS5 Gauss–Legendre quadrature set. We notice that the
spectral radius drastically decreases asσt h increases. Except for optically thick cells, the
methods withα = 0.128 in the considered discretized form possess the minimum spectral
radius. These theoretical results are consistent with the findings of the analysis of theα-
weighted methods in differential form. The disagreement for optically thick cells is due to
the utilized spatial discretization and angular quadrature set.

TABLE II

Theoretically Estimated Spectral Radii for theα-WN and α-WL

Methods versusσt h andα for c = 1

α

αt h 0 0.128 0.366 1 θ

0.01 0.33 0.19 0.22 0.31 3
0.1 0.33 0.19 0.22 0.31 3
1 0.21 0.11 0.15 0.26 3
2 0.10 0.049 0.084 0.20 3
3 0.045 0.022 0.051 0.13 3
5 0.0076 0.0061 0.017 0.039 1

10 6.5× 10−5 3.3× 10−4 4.6× 10−4 7.9× 10−4 1
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TABLE III

Theoretically Estimated Spectral Radii for theα-WN and

α-WL Methods versusσth andα for Problem 1 (c = 0.99)

α

αt h 0 0.128 0.366 1 θ

0.01 0.21 0.18 0.22 0.30 3
0.1 0.21 0.18 0.22 0.30 3
1 0.12 0.11 0.15 0.24 3
2 0.045 0.047 0.077 0.16 3
3 0.016 0.020 0.039 0.086 3
5 0.0016 0.0041 0.0096 0.021 1

10 6.7× 10−6 3.0× 10−5 7.8× 10−5 1.8× 10−4 1

We now present results that compare the theoretical values of spectral radii with numer-
ically estimated values, obtained using the direct solution of transport problems by means
of the considered methods.

Problem 1. We consider slab geometry problems:σt = 1,σs = 0.99,Q = 1, a reflecting
boundaryx = 0, and a vacuum boundaryx = L. We useL = 200h, whereh is the width
of spatial cell. Thus, every problem consists of 200 equal spatial intervals. The angular
mesh for the transport equation and quadrature weights for integration with respect toµ

correspond to the double S5 Gauss–Legendre quadrature set. Note that the use of such
quadrature set is necessary, because all functionals (Eqs. (7)–(10) and (29)–(32)) consist of
integrals over half-intervals. The convergence criterion has the form

max
j

∣∣∣∣∣1− φ
(k)
j

φ
(k−1)
j

∣∣∣∣∣ < ε, (122)

whereesε = 10−7, j spans the spatial mesh, andk is the iteration index.
Tables III–V contain the theoretically and numerically estimated spectral radii for the

α-WN andα-WL methods. The numerically estimated spectral radii were determined by

TABLE IV

Numerically Estimated Spectral Radii for theα-WN Methods

versusσth andα for Problem 1 (c = 0.99)

α

0.01 0.11 0.10 0.14 0.24 3

0.1 0.19 0.13 0.17 0.23 3
1 0.090 0.085 0.12 0.20 3
2 0.035 0.036 0.056 0.13 3
3 0.012 0.014 0.026 0.069 3
5 8.0× 10−4 0.0022 0.0054 0.014 1

10 3.4× 10−6 9.1× 10−6 2.5× 10−5 5.4× 10−5 1
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TABLE V

Numerically Estimated Spectral Radii for theα-WL Methods

versusσth andα for Problem 1 (c = 0.99)

α

σt h 0 0.128 0.366 1 θ

0.01 0.15 0.16 0.21 0.28 3
0.1 0.18 0.16 0.20 0.27 3
1 0.10 0.092 0.12 0.22 3
2 0.037 0.038 0.063 0.14 3
3 0.012 0.015 0.031 0.073 3
5 0.0011 0.0028 0.0065 0.016 1

10 2.9× 10−6 1.5× 10−5 4.1× 10−5 9.6× 10−5 1

using the formula

ρ =
∥∥φ(k) − φ(k−1)

∥∥
L2∥∥φ(k−1) − φ(k−2)
∥∥

L2

(123)

for the last iteration in each problem. The results show that the Fourier analysis approxi-
mately predicts the value of the spectral radii for theα-WN andα-WL methods. As may be
seen from the numerical results, the considered nonlinear and linear methods have similar
convergence properties. Note that forc = 1, the methods withα = 0 possess the maximum
spectral radii for optically thin cells among the methods under examination (Table I). How-
ever, forc = 0.99, the methods withα = 0 are second only to the methods withα = 0.128
for optically thin cells, and moreover they have the minimum spectral radii for the other op-
tical thicknesses. Such changes in the spectral radii of the considered methods are predicted
theoretically (Table III) and are confirmed by numerical calculations (Tables IV and V).

These theoretical and numerical estimations of the convergence properties were obtained
for the class of problems in which the considered iterates are close to the solution. Next,
we compare theα-weighted methods in general cases considering directly the iteration
numbers in problems with scattering ratios close to unity.

Problem 2. We consider a slab 0≤ x ≤ 20 havingσt = 1, σs = 0.97, Q = 0. The left
boundary has an isotropic incident flux with magnitude unity, and the right boundary is
reflecting [24]. A spatial mesh consisting ofJ equal cells withh = 20/J is used. The
double S4 Gauss–Legendre quadrature set is used. The relative pointwise convergence
criterion (122) withε = 10−12 is imposed.

The number of iterations are listed in Table VI. These results demonstrate that the meth-
ods withα = 0.128 converge faster than other ones, and that the considered linear and
nonlinear methods have almost equal convergence rates in problems with isotropic scat-
tering. Comparing the DSA-like methods (α = 0.366) with the DSA and QD methods, we
note that these methods have approximately the same numbers of iterations for optically
thin cells. However, for optically thick cells theα-WN andα-WL methods withα = 0.366
have advantages over the QD and DSA methods in convergence rates. The iteration numbers
of the DSA method were taken from [24].

In the next test problem, the issues related to accuracy of theα-weighted methods and
pure SC method are considered.



680 ANISTRATOV AND LARSEN

TABLE VI

Number of Iterations of the α-WN and α-WL Methods versusσth

andα for Problem 2

α-WN α-WL

α α

σt h 0 0.128 0.366 1 0 0.128 0.366 1 DSA QD

5 5 5 7 8 5 5 6 7 14 10
2 10 9 11 16 9 9 11 14 16 14
1 13 12 13 19 12 11 13 18 16 14
0.5 15 13 15 20 14 13 15 19 16 15
0.25 16 14 16 20 15 14 15 20 16 15
0.125 16 14 16 20 16 14 16 20 16 15

Problem 3. We consider a slab 0≤ x ≤ 20 withσt = 1 σs = 1, Q = 10−2, a reflecting
boundaryx = 0, and a vacuum boundaryx = L. We use uniform spatial meshes with 10
and 20 intervals, i.e., the optical thickness of intervals of these meshes areσt h = 2 and
σt h = 1, respectively. The double S5 Gauss–Legendre quadrature set is utilized. The relative
pointwise convergence criterion (122) withε = 10−7 is imposed.

Figures 1 and 2 demonstrate the numerical solution (φ) of the SC method (obtained
with source iterations) andα-WN methods with different values of the parameterα. Let us

FIG. 1. Problem 3. The scalar fluxφ obtained by the SC method andα-WN methods with variousα in case
σt h = 2.
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FIG. 2. Problem 3. The scalar fluxφ obtained by the SC method andα-WN methods with variousα in case
σt h = 1.

recall that there are two scalar flux solutions that come out of theα-weighted methods. The
presented scalar flux of theα-WN methods is the one that is the solution of the low-order
problem. The exact solution was obtained by the QD method on fine spatial and angular
meshes. These results show that the solution of theα-weighted methods is more accurate
than the solution of the SC method itself, in spite of the fact that in the framework of the
α-weighted methods the SC method is used to calculate the angular flux and generate the
functionals. The scalar flux solutions of theα-WN methods from the high-order problem
calculated by the SC method are very close to those from the low-order problem. We discuss
only the results of the nonlinear methods because the behavior of the numerical solution of
theα-WL methods is similar.

We notice that the accuracy of theα-weighted methods depends on the value ofα.
Table VII contains the relative errors of numerical solutions atx = 0 obtained by theα-WN

TABLE VII

The Relative Errors [%] of Numerical Solutions of the α-WN

Methods atx = 0 versusσth andα for Problem 3

α

σt h 0 0.128 0.366 1 2 4 10 30

1 −10.7 −9.5 −7.4 −3.5 −1.0 0.5 1.0 1.1
2 −20.9 −16.4 −9.3 2.5 10.5 16.1 19.3 20.2
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methods with various values ofα. The analysis of errors of numerical results enabled us
to determine the “optimal” value ofα with which theα-WN method generates an accurate
numerical solution of the given test problem on a particular mesh. Theα-WN method with
α = 0.825 gives the most accurate solution on the mesh withσt h = 2. The relative error
at x = 0 in this case is very small and equal to−0.04%. Theα-WN method withα = 3
produces the most accurate solution on the mesh withσt h = 1. The relative error atx = 0
is equal to 0.04%. Note that among a variety of theα-weighted methods there are three
methods with some important specific features of the low-order equations. The low-order
equations of the method withα = 0 (the FF method) have a form of the particle balance
equation. The low-order equations in case ofα = 1 (the SF method) result in the Fick’s
law in optically thick regions. In case ofα = αDSA, the low-order equations reduce to the
diffusion equation in the optically thick regions. The presented numerical solutions indicate
that none of these methods is the most accurate on intermediate meshes.

Thus, the results of Problem 3 show that theα-weighted methods are clearly more
accurate than the pure SC method for all values ofα. This demonstrates the improvement of
accuracy that is possible in case of independent discretization. The optimization of accuracy
by means of choosing special weight function is another specific option of the proposed
α-weighted methods. It is interesting to obtain theoretical results that will describe the
relatinship between the value ofα and accuracy of these methods.

6. DISCUSSION

We have proposed a new family of nonlinear and linear methods for solving particle
transport problems. To discretize these methods, one can use independent schemes for the
transport and low-order equations. The proposed nonlinearα-weighted method reduces to
the FF or SF method for special values ofα. Theα-WL methods have the same mathematical
form as the linearizedα-WN methods. The proposed methods have been presented in slab
geometry.

We studied theoretically the convergence properties of these methods in both differen-
tial and discretized form for transport problems with isotropic scattering. We showed that
the considered nonlinear and linear methods have identical convergence behavior in the
vicinity of the solution. The Fourier analysis of theα-WL and linearizedα-WN methods
in differential form revealed that the methods withα = 0.128 possess the best convergence
rates, and the methods withα ≈ 0.366 have convergence properties similar to the DSA
and linearized QD methods. The theoretical analysis of the discretized methods enables us
to predict approximately their spectral radii. The considered methods were approximated
by means of independent differencing schemes. We used the linear discontinuous method
for the low-order equations and the step characteristic method for the transport equation.
Numerical testing confirmed that the nonlinear and linear methods have almost equal iter-
ation numbers in problems with isotropic scattering. We also showed the advantage of the
methods withα = 0.128 in convergence rates for optically thin cells.

The low-order equations of theα-weighted methods are similar in structure to the trans-
port equation and, hence, transport differencing schemes can be used as a basis for their
approximation. Theα-weighted methods in multidimensional geometries can be good for
solving the transport equation in parallel, because parallel algorithms for the transport equa-
tion can be applied to the low-order equations of these methods. Note that these features of
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theα-weighted methods are close philosophically in some aspects to the transport synthetic
acceleration (TSA) method [26]. There is an interesting option of developing new iterative
methods based on some combination of ideas of theα-weighted and TSA methods.

The derivation of the proposed methods in multidimensional geometries is similar to the
way the flux methods are formulated [10, 27]. It is based on dividing the unit sphere on
nonoverlaping subsets and integrating the transport equation over them. Theα-weighted
methods as well as the flux methods can be applied for the problems with anisotropic
scattering. In such a case, the right-hand side of the transport equation should be also
transformed by means of moments of the transport solution and set of stable functionals,
according to methodology developed in the QD method [1, 12, 15].

In one-dimensional geometry the discretized low-order equations of theα-weighted
methods can be easily solved. In case of multidimensional geometries, efficient iteration
methods must be used. Krylov subspace methods are good candidates for solving these
equations. This is an issue for future research.

The present paper addresses the stability analysis of the proposed parametric family of
iteration methods for solving the transport equation. In further research we plan to consider
various aspects of approximation of high- and low-order equations and approaches for
efficient solving the low-order problem of theα-WN methods. It is interesting to consider a
parametrized family of nonlinear and linear methods with a different set of weight functions,
for example,w(µ) = 1+ ζ |µ|α, whereα andζ are constants. Preliminary investigations
have shown that the method withα = 1 andζ = √3 has low-order equations that result
in the diffusion equation in case of a nearly isotropic angular flux, i.e., in the diffusion
limit. This particular method possesses some other good features as well, which make
approximation of low-order equations easier. Another set of weight functions that deserves
to be studied is general polynomials ofµ.
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