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A parametrized family of iterative methods for the planar-geometry transport equa-
tion is proposed. This family is a generalization of previously proposed nonlinear
flux methods. The new methods are derived by integrating the 1D transport equation
over—1 < pu < 0and0< p < 1 with weight|u|*, @ > 0. Both nonlinear and linear
methods are developed. The convergence properties of the proposed methods are
studied theoretically by means of a Fourier stability analysis. The optimum value of
« that provides the best convergence rate is derived. We also show that the conver-
gence rates of nonlinear and linear methods are almost the same. Numerical results
are presented to confirm these theoretical predictions2001 Academic Press
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1. INTRODUCTION

To solve the particle transport equation, iteration methods must be utilized, due to
integro-differential nature of this equation. For many highly scattering problems, the sou
iteration algorithm converges slowly and requires an inordinate amount of computer tir
To accelerate these iterations, nonlinear projective-iteration (NPI) methods [1, 2] have b
developed; these are also known as projected discrete ordinates (PDO) methods [3]. An
these methods are the quasi-diffusion (QD) method [4], a method based on the Yv
Mertens approximation [5], the second-moment method [6], the first-flux (FF) (averag
flux) method [7-9], second-flux (SF) method [10], and nonlinealikeé methods [11].

The NPI (PDO) methods have the following features:

1. Most of these methods are nonlinear.
2. Eachmethodis defined by a system of equations consisting of two parts: the “transp
(“high-order”) and “low-order” (moments) equations.
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3. The low-order equations are a set of equations for various moments of the distribu
function over angles and energy.

4. These methods converge very rapidly.

5. The nonlinear methods contain special functionals that are weakly dependent or
transport solution. This results in fast convergence rates.

6. For stability, there is no need to discretize the transport and low-order equations c
sistently. These independent discretizations may make it possible to improve the accu
of the numerical solution.

We note that the QD method has also been successfully used for solving upscatte
problems [12].

In general, the discretized equations of an NPl (PDO) method yield two scalar flux sc
tions. One is generated by the high-order problem, the other by the low-order problem.
accuracies of these two scalar fluxes depend on their spatial discretizations. A “consist
discretization [13, 14] results in the scalar fluxes being identical, in which case the N
(PDO) methods are pure acceleration methods (the converged accelerated and unac
ated solutions are identical on any grid). Independent discretizations [2] generally give
to scalar fluxes that differ by a truncation error. Thus, an NPI (PDO) method approxima
by independent schemes is a rapidly converging iterative method, but not a pure acce
tion method (the solution is altered by a small amount). However, if the size of the me
cells tends to zero and the difference schemes for the transport and low-order equa
converge, then these two scalar fluxes tend to each other and to the exact solution o
discrete-ordinates equations.

The low-order equations of the QD and “flux” methods are of different forms. A
attractive feature of the flux methods is that the low-order equations are simplified tra
port equations, which can be discretized using known transport differencing schen
This fact presents an opportunity improvethe accuracy of the numerical solution of
a given discretization scheme for the high-order transport equation. This can be d
if the discretization scheme for the low-order equations is chosen to be more accu
than the original discretization scheme chosen for the high-order equations. Employ
such inconsistent discretization schemes leads to a numerical algorithm in which
converged scalar fluxes are (i) more accurate than the original discrete solution, anc
are obtained much more efficiently. Consistent discretizations do not possess the oy
of improving the accuracy of the solution. This issues was discussed and studied in
2,11].

In this paper, we present a generalization of the FF and SF methods, which, for sini
group problems with isotropic scattering, are obtained by integrating the transport equa
over the half-ranges-1 < 1 <0 and O< u <1, with weights 1 and, respectively £ is
the direction cosine). These methods are nonlinear. (In a variant of the flux methods, us
for electron transport problems with highly anisotropic scattering, the transport equatiol
integrated over a number of subintervals-df < u < 1. [15]).

Here, we develop an expanded nonlinear familya@fteighted” iteration methods that
use weightgu|*, wherea is any nonnegative constant.df= 0, the FF method results,
and if« = 1 the SF method results. For other valuesxpthe iteration methods are new.
We derive both nonlinear and linear versions of these methods, which have a similar m
ematical structure to the FF and SF methods (the low-order equations are a simpli
transport equation). Since the resulting iteration schemes qualify as NPl (PDO) meth
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they possess the features described above. Thus, they should have the capacity to pr
iterative solutions much more efficiently than by the unaccelerated Source Iteration prc
dure, and they should have the capacity to produce more accurate solutions under the |
circumstances.

In numerical simulations described in this paper, we use the Step Characteristic (SC)
tial differencing scheme [16] for the high-order transport equation, and the more accul
Linear Discontinuous (LD) scheme [17-19] for the low-order equations. The (high-ords
SC method is used in several common reactor physics codes. This discretization me
has many advantages: it is second-order accurate, and it produces positive and mono
(nonoscillatory) solutions. However, it is not accurate for diffusive problems with sp:
tial cells that are not optically thin [20]. The (low-order) LD method is more accurat
and expensive than SC, but it performs well in diffusive problems with spatial cells th
are not optically thin [19]. In this paper, we demonstrate that the scalar fluxes obtair
by the resultingx-weighted methods are obtained efficiently, and are more accurate th
the pure SC solutions for diffusive problems in which the spatial cells are not optica
thin.

This paper is focused on a description of the proposed methods and a consideratic
their basic features, namely, stability properties. As a result of theoretical studies, we h
determined the nonlinear and linear methods with the optimal values(icé., with the
fastest convergence rates). To perform this study, we used a Fourier stability analysis
has been successfully employed for the analysis of various other linear iteration scheme
transport problems [21, 22]. To study nonlinear methods, we analyze the nonlinear mett
after they are linearized around a certain simple solution [23]. We confirm our theoreti
predictions by numerical results.

The remainder of this paper is organized as follows. In Section 2 we formulate t
proposed methods. In Section 3 we study the methods in differential form by means
the Fourier analysis and show that the methods with prescribed valueshate par-
ticular properties. In Section 4 we present difference schemes for the considered m
ods. In Section 5 we perform a theoretical and numerical investigation of the discreti:
methods applying the Fourier stability analysis. We conclude with a discussion
Section 6.

2. FORMULATION OF o-WEIGHTED METHODS

2.1. Nonlinear Methods

Let us consider the slab geometry transport problem

1
9 1
u&w(x, w) + ot (XY (X, ) = 5 (os(X)/w(x, whdu' + Q(X)>, —1<p<l (1)
-1

y(L,w=Fw, -1=pn<0 3

Here v (X, u) is the angular fluxgy andos are the total and scattering cross sections
respectively, and is a source.
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To solve this problem by am-weighted method, we let > 0 be a user-defined constant,
and we define the quantities:

0
¢~ (X) z/llf(x,y,)d“’ @
1
1
o (X) I/W(X,M)du, ©
0
1
¢(X)=/I//(X, w) du, ©
-1
0 | jatl
Ay < @D fglw V(% 0 dpt .
Lo vx, wdu
1 o+l
A+(X) _ (a+1) {0 WY (X, ) du o
Jo ¥ (x, wydp
O o
B~ (x) = (cx+1)0f_1|ul ¥ (X, M)dﬂ’ o
Lo v x, W du
1 o

Jow(x, ) dp

Operating on Eq. (1) bye + 1) f; u*(-) du and(@ + 1) [°, [11]*(-) du, and using the
functionals defined in Egs. (7)—(10), we obtain

_%An/r + (0B~ — 0.505)¢~ = 0.5(asp™* + Q), (11)
%Aw + (0tB* — 0.50)¢" = 0.5(cs™ + Q). (12)

Likewise, operating on Eq. (2) bj61(~) du and on Eq. (3) b)jfl(-) du, we obtain

¢ (0) =9 (0), (13)
¢~ (L) = ¢7, (14)

where
0
¢*=/F(M)du-
-1

Thea-weighted nonlinearo-WN) method is defined by Egs. (1)—(14). This set of equa
tions is solved by the iteration scheme

9
ua—xw“‘“/” + oy *HY2 = 05(a59® + Q), (15)
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1p(k+1/2)(0’ W) = w(k+1/2)(0, — ), (16)
YOV ) = F(u), —1<p <0, 17)
e _ @ D) [l 2 dy (18)
- fi)l Y k+1/2) d

A+(k+1/2) ~ (@+1) fol Ma+11/,(k+1/2)d m (19)

- fol Y k+1/2 dyy
B—(k+1/2) _ (0[ + 1) fi)l |M|a¢(k+l/2)d'u (20)

- fi)l Y k+1/2 dy
B+(k+1/2) _ (O{ + 1) fol Ma w(k+l/2)dﬂ (21)

fOl k12 dyg

_%A_(k+1/2)¢_(k+l) n (GtB_<k+1/2) _ 0.505)¢_(k+1> _ 0'5(05¢+“‘*” + Q) (22)
%A+(k+1/2>¢+(k+l) T (Ut B+<k+1/2’ _ 0.505)¢+(k+1) = 0.5(05(]57(“1) + Q), (23)
¢(k+1) — ¢+(k+l) + d)_(kﬂ) (24)
¢+<k+1) (O) — ¢_(k+1) (0)7 (25)
¢’(k+1)(L) = ¢*, (26)

wherek is the iteration index. For the initial iteratior;b,‘(o) and¢+(°) are determined by
solving the low-order problem (22)—(26) with* = g—j; and B* =1. Thus, the above
nonlinear iteration scheme consists of three parts:

1. A conventional transport sweep to calculaté™/? (x, 1) (Egs. (15)—(17)).

2. The calculation of the functionald=*“"™" (x) and B=“""? (x) from v &+1/2(x, 1)
(Egs. (18)—(21)).

3. Solving a low-order transport problem (Egs. (22)—(26))f6

(rl_<+1)

(x).
Fora = 0, the above method reduces to the FF method [8, 9], and ferl it reduces to
the SF method [10]. Thus, the FF and SF methods are special casestdMNemethods.

2.2. Linear Methods

Here we shall derive linear versions of the nonlinear methods developed above. We a
consider problem (1)—(3), and we operatédy- 1) fol n?(-)dpand(a + 1) ffl [ () du
to obtain

d 0 0
—(a+ 1)& (/1 Il (x, ) du) + (@ + Dor(x) /1 [ (X, ) dpw
= 0.5(0s(X) (¢~ (X) + T (X)) + Q(X)), (27)
d 1 1
@+ (/O w g (x, w) du) + (o + 1)C7I(X)/O nEY (X, p) du

= 0.5(05(X) (¢~ (X) + 1 (X)) + Q(X)). (28)
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Then, we define

0

P (x) = / (e + D)l — 1y (x, ) de, (29)
-1
1

P (x) = / [ + D — 1w (x, ) dp, (30)
0
0

R (x) = / Lo+ 21t — 1y (x, ) dpa, (31)
21
1

R () = / (e + 2 — 1y (x, o) . (32)
0

o = ot — 0.505%, (33)

+1
v Z +2 (34)

Rearranging, we obtain

dp= . 1 _ dR
—VW'FU(f’ —E(Usfﬁ + Q) —otP _H/W’ (35)
dp* . . 1 B . dR*
VW'FU(ﬁ —E(Usfﬁ + Q) —otP —Vw~ (36)

Note that we have added terms to both sides of the equations, and that the last two tern
the right sides of Egs. (35) and (36) vanisliifx, 1) is constant fop. < 0 and constant for
w > 0. The boundary conditions for the low-order equations are the same asdir/ti
methods; i.e.,

" (0) = ¢~ (0), (37)
¢~ (L) = o™ (38)

Thus, thex-weighted linear¢-WL) methods are defined by Egs. (1)—(3) and (29)—(38)
The iteration scheme for the-WL methods is similar to that for the-WN methods. It
consists of three parts:

1. Atransport sweep to calculage /2 (x, 1) (Egs. (1)—(3)).

2. The calculation of the functionaB*"“""? (x) and R"“"? (x) from v *+V/2(x, 1)
(Egs. (29)—(32)).

3. Solving a low-order transport problem (Egs. (35)—(38)xf®

?‘(+ 1

(X).

For the initial iterationg—" and¢* are determined by solving the low-order problem
(35)=(38) withP* = 0 andR* = 0.
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3. ANALYSIS OF THE METHODS IN DIFFERENTIAL FORM

3.1. Linearized a-Weighted Nonlinear Methods

In order to study the convergence properties of the proposed nonlinear methods, we ¢
linearize them [23]. We consider an infinite medium, constant cross section, and flat sot
problem. The exact solution of this problem is simply

(X, )n) = %, whereo, = ot — 0s. (39)
a

We assume that the iterations begin with an initial estimate that is close to this exact solut
and we assume that all succeeding iterations remain close to this solution. Conseque
we set

Y2 (x, ) = 09(% + g A (x, u)>, (40)
@ 1 ®

¢+ 00 = 09(5 + ¢ kx)), (“1)

1000 = 2 (14 ec00), 42)

wheres < 1. The rate at whiclf ®*+2/2(x, ), ¢=* (x) and¢® (x) tend to zero gives the
convergence rate of the method. If these quantities grow rather than decay, then the me
is unstable.

To analyze ther-WN methods, we introduce the ansatz, (40)—(42), for the angular ai
scalar fluxes into Eqgs. (15) and (22)—(24). Then we expand in powersanfl drop the
O(¢?) terms. The O(1) terms are automatically satisfied and ifa¢ €juations yield

d
po P o P = 0505, (43)
d _(k+D ~ . _(k+D) +(k+1) —(k+1/2) d —(k+1/2)
—y——¢ +6¢ =050 —oaing +y—om . (44)
dx dx
d + - d
yiggk 1 + G§+<k+n — 0.503§,<k+1>_ o ng(sz) . V*’?f(kﬂ-/a’ (45)
dx dx
é-(k+1) — é——(kﬂ) 4 €-+(k+1), (46)

0
Y200 = / [(@+ 1+ mip*™" = e 2 (x, wydu, n=0,1 (47
-1

1

ey €2 (x) = / [0+ 14+ mps" — 12, ydu, n=0,1.  (48)
0

The system of the linearized equations consists of Egs. (43)—(48). Using the same
proach, we obtain equations for the variatigng *, ¢ for the«-WL methods. The result
is exactly Eqgs. (43)—(48). Thus, the linear and linearized methods are identical in form
have identical convergence properties.
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TABLE |
Spectral Radii versusa forc=1

Method o p
First-flux 0 0.3333
Optimal 0.128 0.1865
DSA-like 0.366 0.2247
Second-flux 1 0.3105

3.2. Fourier Analysis

We now study the convergence of the linear and linearized nonlinear methods by me
of a Fourier analysis. Let us consider a model infinite-medium problem with constant cr
sections. We introduce the Fourier ansatz,

§1B(x, ) = a(uwe, (49)
Ci(k) (X) — viwkeikatx’ (50)
C(k)(X) — a)keikatx (51)

into Egs. (43)—(48) and obtain a system of equationsafgr), v, andw. Solving this
system for the cas@ = 1 andos = ¢, we obtain

tarm
o) =c¢ —— 1+2%H)—= —1]. 52
o= =0zt ) [a+azh 2)
It is clear thafw| is maximized forc = 1. We note that ify = % i.e.,a = apsa Where
2—-.3

then Eq. (52) reduces to exactly the formula that applies to DSA and the linearized qu
diffusion methods. Hereafter, we refer to tadVN anda-WL methods withe = apsaas
DSA-like methods.

The spectral radius is defined by

p= Sklldw()»)l- (54)

The values op are tabulated foc = 1 and four values of in Table I. The spectral radius
is minimized fora ~ 0.128.

These theoretical results show that the performance of various methods depend
the choice ofe. However, in practical simulations, the characteristics of each methe
also depend on the choice of a spatial discretization and an angular quadrature set. |
following, we consider the proposed methods in discretized form.

4. DISCRETIZATION OF «a-WEIGHTED METHODS

There are two general approaches for approximation of the equationsaftbeghted
methods: consistent and independent schemes [2, 13, 14]. The consistent schemes gua
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the stability of iteration methods for the transport equation [25]. The study of the QD and fl
methods showed that it is not necessary to discretize low-order equations of these met
consistently with the transport equation [2, 4, 10, 11, 24], whereas the DSA method requ
consistent discretization for stability of iterations [14, 21]. It was theoretically shown that t|
QD method, approximated by means of some independent difference schemes, conve
on a class of model problems, provided that the initial guess is sufficiently close to 1
converged solution [23]. However, there is no general theorem in this regard for this clas
methods. Hence, the stability analysis oféheeighted methods discretized by independen
schemes is of particular interest in the study of their convergence properties.

We now discretize spatially the-weighted methods using independent differencing
schemes for the transport and low-order equations. For the low-order equations, we ch
a linear discontinuous (LD) method [17-19]. We introduce a spatial mesh, selected
thatx;;1,2 (1 < j < J) correspond to the mesh edges, wheyge = 0 andx;j;12 = L,
Xj=0.5(Xj+1/2+ Xj—1/2) are cell centers. The mesh widths are giveh py X 1/2— Xj_1/2.
Integer:l:% subscripts refer to cell-edge quantities, and integer subscripts refer to ce
average quantities. The low-order equations of th&/N method, Eqgs. (11)—(14),
become

— (AT 1287112 — A 1297 _1/2) + (01 B — 0505 j)¢p; hj = 0.5h; (05 j¢] + Qj).
(55)
AT+1/2¢T+1/2 - AT_1/2¢J+_1/2 + (ot,] B]-+ - O-SUs,j)(brhj = 0-5hj (Us,j¢j_ + Qj), (56)
—0; (AT 1207 41/2 + Al_128j-1/2 — 2AT97) + (01, {B=¢7}j — 0.505 j$7)h;
= 0.5h; (0567 + Q). (57)

0] (AT+1/2¢J'++1/2 + Aj+—1/2¢j+—1/2 - 2Aj+¢j+) + (01,j{B*o*}j — O-5gsyj¢§j+)hj

= 0.5h; (as,j¢;j_ +Q)), °
b1 = P12 (59)
byi12 =97 ©0)

where
b7 = b — b1 D
bt = ol 91 ©2
(B~¢7); = B¢} — B2 %)
{(Brot}; = B\1/20) 112 — B ], 9
A= 05(Af,s + Alya) (©9)
B = 0.5(Bjy + By ). (66)
. 6
Q=g [ x-xnQeoax 0

Xj-1/2

Equations (55)—(58) are obtained by integrating Egs. (11) and (12) ovéthtell with
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weights 1 anc — x;. Hereg; is a “lumping” paramete); = 3 corresponds to the standard
LD method;9; = 1 corresponds to a lumped LD method [19]. The lumped scheme is oft
used for optically thick cells.

The discretized low-order equations of #ta@VL methods are defined by

~¥ (#4172 — b_1/2) +Gihj¢; = 0.5hj(0sjé] + Q)) —orjh; Pj°

+7(Riiy2 = RiZ12): (68)
V(¢j++1/2 - ¢J'tl/2) + &J'hj¢1+ = 0.5h; (0sj¢; + Qj) — otjh; Pj+
—v(R12 — Riap2), (69)

—0iy (6] 12+ ¢j_1/2 — 20 ) + Gih;d; = 0.5h (05} + Q) — ot jh; Isj’
+0;v (Riy12 — Ri_12 — 2R}), (70)

01y ($j 12+ B 12 — 2] ) +6;hjd] = 0.5hj(0s ¢} + Q) — ot jh; IST
—0jy (Ri12+ Ryp — 2RY). (71)

¢Ir/2 = ¢]T/27 (72)
¢3+1/2 = ¢*, (73)
where
<13f =¢; —Pj_1)2 (74)
;r = ¢j++1/2 - ¢]+7 (75)
Py =Py —P_yp (76)
P" = 0.5(Pj 10+ Pity)). (78)

The approximation of the right-hand sides was performed following the ideas of the |
method, so that the discretized linear and linearized methods are of the same form. |
that the terms with factad; in the right-hand sides of Egs. (70) and (71) vanish because
Egs. (79).

To solve the high-order transport equation in the framework ofath&N methods,

a positive monotone differencing scheme is necessary to maintain the stability. For
purpose, we choose the step characteristic (SC) method, which can be written [16]

pm(Vmj+12 — ¥mj+12) + 00 (Tmj¥mj-12 + @ = T ) ¥mj+1/2)
= 0.5h; (05 j9; + Q)), (80)

1 Ot ih;
wherery j = —-

Tmj = — — , .
m, | Tm,j emj — 1 m

(81)

The subscriptn denotes the discrete ordinates number, whegr@re the direction cosines
(m=1,..., M). For boundary conditions, we prescribe the incident angular flux on tt
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right boundary,

I»/fm,.H-l/Z =Fm, um<0, (82)

and for a reflective left boundary, we prescribe

Ym1/2 = ¥n12, fOr m = —pn. (83)

The same scheme is used for th&VL methods.
To calculate the functionald®, B*, P%, andR*, one should use a quadrature set with
angular weightsvn, that satisfy the conditions:

S um= Y um=1 (84)

meM-— meM+

where
M™ ={m: um <0}, M+={m:ﬂm20}- (85)

The approximation of these functionals will be discussed later.

Note that in optically thick diffusion regions, the SC method generates an isotrof
angular flux, and this results in correct values of functionals. For the low-order equation:
thex-weighted methods, the LD discretization gives rise to accurate approximation of |
diffusion equation in optically thick regions in casenof= 0.366 (i.e., DSA-like methods).

5. ANALYSIS OF THE DISCRETIZED METHODS

5.1. Linearization

To study the convergence properties of the discretized nonlinear methods, we use
same approach as above. We linearize the discretized equations, considering again an ir
medium, constant cross section, and a flat source problem with a uniform mesh. The e
solution of this problem is

1//m’1+]_/2 = %, Whereoa = Ot — Os. (86)
a

We assume that the iterations begin with an initial estimate that is close to the exact solu
(86). Thus, we set

ki Q1 k+1/2
Vim )12 = (5 +séé,j+é/£), (87)
) Q/1 ®
P12 = o (2 +8§ji+1/2>v (88)
1
¢J;t(k) _ 8 (_ +8§ji(k)> ’ (89)
oa \ 2
¢](k) — 9 <1+8§j(k)) , (90)
Oa

wheres « 1.



NONLINEAR AND LINEAR «-WEIGHTED METHODS 675

To analyze thex-WN methods, we introduce the ansatz (87)—(90) for the angular at
scalar fluxes into Egs. (55)—(67), (80), and (81), taking into account the iteration sche
(15)—(26). Then we expand the resulting equations in powets ahd drop the Q@?)
terms. In the transport differencing scheme (80) and (81), the O(1) terms are automatic
satisfied and the @) equations yield

k+1/2 k+1/2 k+1/2 k+1/2 k
(702 — bt 200 )+ oth (T 202 + (L= T 1152 ) = 0Bashe ¥, (91)

In the low-order equations, the O(1) terms cancel out, provided that the quadrature
satisfies the following conditions:

1
Z |Mm|awm = Z I/L?nUJm = (x——i—l’ for anyo. (92)

meM- meM+

To circumvent this strong restriction on the quadrature set, we replace theda¢ttrin
the functionalsA* andB* by the factor

-1
o = ( > u‘;‘nwm> , (93)

meM+

that is, by an approximation af + 1 by means of the utilizing quadrature set. We alsc
consider quadrature sets that meet the symmetry condition

Z [teml|®wm = Z N«ﬁqwm- (94)

meM- meM+

Thus, we have

@ Zme M+ [em |a+1¢m, j+1/2Wm

1+1/2 ZmeMi I/fm$j+l/2wm
B _ Qo ZmEMi|Mm|a¢m,j+1/2wm 96
i+1/2 = _ : (96)
ZmeMiwmsJJrl/Zwm
As a result, the O(1) terms cancel out and we obtain thg &{uations
_(k+1) _(k+1) — _(k+1) (K+1)
—p1 (§j+1/2 - fj—l/z) +ohs " —0.505h¢;
_(k+1/2) _(k+1/2) _(k+1/2) _(k+1/2
= 0-5(711,j+1/2 —Myj-1/2— 0~5Uth<770,j_1/2 + no,j+1/2)>’ (97)
(k+1) (k+1) ~ (k+1) _(k+1)
,Bl(gjtrl/z - é“,il/z) +6he " — 050she,
(k+1/2) (k+1/2) (k+1/2) (k+1/2)
= 0-5('73171/2 — M jr12 — 05@“(”&171/2 + ’75141/2))’ (98)

_(k+D) _(k+1) _(k+1) ~ _(k+D) _(k+1) (k+1/2) (k+1)
—951(§J+1/2 &1z — 2 )+"h(§i - 41—1/2)— 0.505h (§j++1/2 - )

k12 _(kt1/2)
_ 0'25mh<n0’j_1/2 - 770,j+1/2)’ (99)
(k+1) (k+1) (k+1) ~ (k+1) (k+1) — D —
9,31(5111/2 ¢y — % )+Uh<§j++l/2 -4 )_O.SGSh (51 ) §J—1/2)
(k+1/2) (+1/2)
= O.25mh<776r,j71/2 - 773]+1/2>’ o

é.J_(k+1) — Cj_<k+1) + é_r(k+1>’ (101)
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where, forn =0and 1,

K+
M =2 Y (@olml™" = BTy wm, (102)
meM=
-1
oy = ( Z an+”wm> , (103)
meM+
g=20 (104)
Qn

Similarly, we derive the equations for variation of difference solutions from exact or
(Eg. (86)) for the discretized-WL methods. In this case, the same condition (92) must b
satisfied to cancel out the O(1) terms. Therefore, the procedure described above is apy
and the functional®* and R* are calculated in the following form:

P2 = Z (aolpm|® = D)¥m j+1/2Wm. (105)
meM+

Rii12 = Z (@1lpm|*™™ = D¥m j+1/2wm. (106)
meM=*

As aresult, the O(1) terms are satisfied. To make the resulting equations of the nonlinear
linear methods consistent with each other, we also repldEe|. (34)) withg; [Eq. (104)]in
the low-order equations of the WL methods (Egs. (68)—(71)). Finally, the £ equations

of the discretized-WL methods are identical to the (equations of the linearized WN
methods (Egs. (97)—(104)).

5.2. Fourier Analysis

We now apply a Fourier analysis to the discretized equations of the considered mett
for a model infinite medium problem with constant cross sections and a uniform spa
mesh. We choose the following Fourier ansatz:

HE) = e, o)
Cji(k:i/z — pEgkeioXiie, (108)
£0 _ pE kel rorx; , 109

£
® _  keirorxj 110
; (110

Introducing the Fourier ansatz into the equations (91) and (97)—(104), we obtain a sys
of equations foerm, v, t*, andw. Solving the resulting system far, we obtain

w=22 (111)

w2
where

w1 = 010sh?[2B18:(28aS1 + oPh?S) tarf x + (8:8a + vtarf x)
x (o2h?S + 2(Z1 — prZo) tarf x )], (112)
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wy = —882010ah? — v(2B18; + oroah?) tarf x, (113)
x = 0.50a¢h, (114)
8a = 216 + o3h, (115)
8t = 210 + oth, (116)
v = 21085 + oroah?, (117)

andforn=0and 1,

Zn= Z On.m(2itm + oth(1 — 2Tm)) wm, (118)
meM+

S = Z On,mWm, (119)
meM+

aOM(r)ln+n — Bn
= . 120
Onm = G20 + 2ptm + (L — 2Ty) 2 tarP x (120)

The spectral radius is defined by

p = sup |o(x)l. (121)

0<x<%

The spectral radius determines the stability of the considered methods.

5.3. Numerical Results

To obtain the spectral radii for various infinite medium problems, we evaluigsing
Egs. (111)-(120). Table Il contains theoretical estimates of the spectrad fadthe«-WN
anda-WL methods versusih ande, for ¢ = 1, wherec = og/oy is the scattering ratio.
To calculatew, we use the doubl& Gauss—-Legendre quadrature set. We notice that tt
spectral radius drastically decreasesrdsincreases. Except for optically thick cells, the
methods withw = 0.128 in the considered discretized form possess the minimum spect
radius. These theoretical results are consistent with the findings of the analysisoof the
weighted methods in differential form. The disagreement for optically thick cells is due
the utilized spatial discretization and angular quadrature set.

TABLE Il
Theoretically Estimated Spectral Radii for the a-WN and a-WL
Methods versusoih and e forc= 1

o

ath 0 0.128 0.366 1 0

0.01 0.33 0.19 0.22 0.31 3
0.1 0.33 0.19 0.22 0.31 3
1 0.21 0.11 0.15 0.26 3
2 0.10 0.049 0.084 0.20 3
3 0.045 0.022 0.051 0.13 3
5 0.0076 0.0061 0.017 0.039 1

10 65 x 10°° 3.3x10* 4.6 x 10 7.9 x 107 1
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TABLE 11l
Theoretically Estimated Spectral Radii for the a-WN and
a-WL Methods versuso:h and a for Problem 1 (c = 0.99)

o

ath 0 0.128 0.366 1 0
0.01 0.21 0.18 0.22 0.30 3
0.1 0.21 0.18 0.22 0.30 3
1 0.12 0.11 0.15 0.24 3
2 0.045 0.047 0.077 0.16 3
3 0.016 0.020 0.039 0.086 3
5 0.0016 0.0041 0.0096 0.021 1
10 67 x 10°° 3.0 x 10°° 7.8x 10°° 1.8 x 10 1

We now present results that compare the theoretical values of spectral radii with nun
ically estimated values, obtained using the direct solution of transport problems by me
of the considered methods.

Problem 1. We consider slab geometry problemis= 1,05 = 0.99,Q = 1, areflecting
boundaryx = 0, and a vacuum boundary= L. We useL = 20Ch, whereh is the width
of spatial cell. Thus, every problem consists of 200 equal spatial intervals. The angt
mesh for the transport equation and quadrature weights for integration with respect t
correspond to the doubles $auss—Legendre quadrature set. Note that the use of su
guadrature set is necessary, because all functionals (Egs. (7)—(10) and (29)—(32)) cons
integrals over half-intervals. The convergence criterion has the form

o
maxl— ——
# 4

wherees = 107, j spans the spatial mesh, akib the iteration index.
Tables 1lI-V contain the theoretically and numerically estimated spectral radii for tt
a-WN anda-WL methods. The numerically estimated spectral radii were determined |

<€, (122)

TABLE IV
Numerically Estimated Spectral Radii for the a-WN Methods
versusaoth and a for Problem 1 (c = 0.99)

o

0.01 0.11 0.10 0.14 0.24 3
0.1 0.19 0.13 0.17 0.23 3
1 0.090 0.085 0.12 0.20 3
2 0.035 0.036 0.056 0.13 3
3 0.012 0.014 0.026 0.069 3
5 80 x 10 0.0022 0.0054 0.014 1

10 34 x10° 9.1 x 108 25x10°° 5.4 x 107 1
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TABLE V
Numerically Estimated Spectral Radii for the a-WL Methods
versusath and « for Problem 1 (c = 0.99)

o

oth 0 0.128 0.366 1 0
0.01 0.15 0.16 0.21 0.28 3
0.1 0.18 0.16 0.20 0.27 3
1 0.10 0.092 0.12 0.22 3
2 0.037 0.038 0.063 0.14 3
3 0.012 0.015 0.031 0.073 3
5 0.0011 0.0028 0.0065 0.016 1
10 29x 10°° 15x 10° 4.1x10° 9.6 x 10°° 1

using the formula

_ g% =™,
T ot —o® 2

(123)

for the last iteration in each problem. The results show that the Fourier analysis appr
mately predicts the value of the spectral radii foréh®/N anda-WL methods. As may be
seen from the numerical results, the considered nonlinear and linear methods have sil
convergence properties. Note thatéoe 1, the methods withk = 0 possess the maximum
spectral radii for optically thin cells among the methods under examination (Table ). Ho
ever, forc = 0.99, the methods with = 0 are second only to the methods witk= 0.128
for optically thin cells, and moreover they have the minimum spectral radii for the other ¢
tical thicknesses. Such changes in the spectral radii of the considered methods are prec
theoretically (Table IIl) and are confirmed by numerical calculations (Tables IV and V).
These theoretical and numerical estimations of the convergence properties were obte
for the class of problems in which the considered iterates are close to the solution. N
we compare the:-weighted methods in general cases considering directly the iteratis
numbers in problems with scattering ratios close to unity.

Problem 2. We consider a slab & x < 20 havingo; = 1,05 = 0.97,Q = 0. The left
boundary has an isotropic incident flux with magnitude unity, and the right boundary
reflecting [24]. A spatial mesh consisting dfequal cells withh = 20/J is used. The
double § Gauss-Legendre quadrature set is used. The relative pointwise converge
criterion (122) withe = 10~*? is imposed.

The number of iterations are listed in Table VI. These results demonstrate that the m
ods witha = 0.128 converge faster than other ones, and that the considered linear
nonlinear methods have almost equal convergence rates in problems with isotropic ¢
tering. Comparing the DSA-like methods & 0.366) with the DSA and QD methods, we
note that these methods have approximately the same numbers of iterations for optic
thin cells. However, for optically thick cells the WN anda-WL methods withw = 0.366
have advantages over the QD and DSA methods in convergence rates. The iteration nun
of the DSA method were taken from [24].

In the next test problem, the issues related to accuracy af+heighted methods and
pure SC method are considered.
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TABLE VI

Number of Iterations of the a-WN and a-WL Methods versuso:h
and « for Problem 2

a-WN a-WL
o
oth 0 0.128 0.366 1 0 0.128 0.366 1 DSA QD
5 5 5 7 8 5 5 6 7 14 10
2 10 9 11 16 9 9 11 14 16 14
1 13 12 13 19 12 11 13 18 16 14
0.5 15 13 15 20 14 13 15 19 16 15
0.25 16 14 16 20 15 14 15 20 16 15
0.125 16 14 16 20 16 14 16 20 16 15

Problem 3. We consideraslab @ x < 20 withoy = 105 = 1, Q = 1072, areflecting
boundaryx = 0, and a vacuum boundary= L. We use uniform spatial meshes with 10
and 20 intervals, i.e., the optical thickness of intervals of these mesheshare2 and
oth = 1, respectively. The doublg &auss—Legendre quadrature setis utilized. The relativ

pointwise convergence criterion (122) with= 10~ is imposed.

Figures 1 and 2 demonstrate the numerical solutinaof the SC method (obtained
with source iterations) ang-WN methods with different values of the parametet.et us

Exact ©—
——

0 1 1 L L L L L L
0 2 4 8 10 12 14 16 18 20
Position
FIG. 1. Problem 3. The scalar flux obtained by the SC method aneWN methods with varioug in case
oth = 2.
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8 T T T T T T T T T
Exact ©—
SC —+—
7‘ ................ ) a=0 - -
a=0128 —
g a = 0.366 -o—

a=1-e— |

0 2 4 6 8 10 12 14 16 18 20
Position

FIG. 2. Problem 3. The scalar flux obtained by the SC method aneWWN methods with various in case
oth=1.

recall that there are two scalar flux solutions that come out af theeighted methods. The
presented scalar flux of the WN methods is the one that is the solution of the low-orde
problem. The exact solution was obtained by the QD method on fine spatial and ang
meshes. These results show that the solution o&theighted methods is more accurate
than the solution of the SC method itself, in spite of the fact that in the framework of t
a-weighted methods the SC method is used to calculate the angular flux and generat
functionals. The scalar flux solutions of theWWN methods from the high-order problem
calculated by the SC method are very close to those from the low-order problem. We dis
only the results of the nonlinear methods because the behavior of the numerical solutic
the-WL methods is similar.

We notice that the accuracy of theweighted methods depends on the valuexof
Table VIl contains the relative errors of numerical solutions at 0 obtained by the-WN

TABLE VII
The Relative Errors [%)] of Numerical Solutions of the a-WN
Methods atx = 0 versuso:h and « for Problem 3

o

ath 0 0.128 0.366 1 2 4 10 30

1 —-10.7 -95 -74 -35 -10 0.5 1.0 11
2 -209 -164 -93 2.5 105 161 193 20.2
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methods with various values ef The analysis of errors of numerical results enabled u
to determine the “optimal” value @f with which thex-WN method generates an accurate
numerical solution of the given test problem on a particular meshaTW&N method with

a = 0.825 gives the most accurate solution on the mesh with= 2. The relative error
atx = 0 in this case is very small and equal+®.04%. Thex-WN method witha = 3
produces the most accurate solution on the meshaith= 1. The relative error at = 0

is equal to 0.04%. Note that among a variety of theveighted methods there are three
methods with some important specific features of the low-order equations. The low-or
equations of the method withh = 0 (the FF method) have a form of the particle balance
equation. The low-order equations in casexof 1 (the SF method) result in the Fick’s
law in optically thick regions. In case of = apsp, the low-order equations reduce to the
diffusion equation in the optically thick regions. The presented numerical solutions indic:
that none of these methods is the most accurate on intermediate meshes.

Thus, the results of Problem 3 show that theveighted methods are clearly more
accurate than the pure SC method for all values.dthis demonstrates the improvement of
accuracy thatis possible in case of independent discretization. The optimization of accul
by means of choosing special weight function is another specific option of the propos
a-weighted methods. It is interesting to obtain theoretical results that will describe t
relatinship between the value @fand accuracy of these methods.

6. DISCUSSION

We have proposed a new family of nonlinear and linear methods for solving partic
transport problems. To discretize these methods, one can use independent schemes f
transport and low-order equations. The proposed nonlimemeighted method reduces to
the FF or SF method for special valuesoThex-WL methods have the same mathematical
form as the linearized-WN methods. The proposed methods have been presented in s
geometry.

We studied theoretically the convergence properties of these methods in both differ
tial and discretized form for transport problems with isotropic scattering. We showed tt
the considered nonlinear and linear methods have identical convergence behavior ir
vicinity of the solution. The Fourier analysis of theWL and linearizedxr-WN methods
in differential form revealed that the methods with= 0.128 possess the best convergence
rates, and the methods with~ 0.366 have convergence properties similar to the DS/
and linearized QD methods. The theoretical analysis of the discretized methods enable
to predict approximately their spectral radii. The considered methods were approxime
by means of independent differencing schemes. We used the linear discontinuous me
for the low-order equations and the step characteristic method for the transport equa
Numerical testing confirmed that the nonlinear and linear methods have almost equal
ation numbers in problems with isotropic scattering. We also showed the advantage of
methods withe = 0.128 in convergence rates for optically thin cells.

The low-order equations of theweighted methods are similar in structure to the trans
port equation and, hence, transport differencing schemes can be used as a basis for
approximation. The:-weighted methods in multidimensional geometries can be good f
solving the transport equation in parallel, because parallel algorithms for the transport ec
tion can be applied to the low-order equations of these methods. Note that these featur
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thea-weighted methods are close philosophically in some aspects to the transport syntt
acceleration (TSA) method [26]. There is an interesting option of developing new iterat
methods based on some combination of ideas oftiaeighted and TSA methods.

The derivation of the proposed methods in multidimensional geometries is similar to
way the flux methods are formulated [10, 27]. It is based on dividing the unit sphere
nonoverlaping subsets and integrating the transport equation over ther-Weghted
methods as well as the flux methods can be applied for the problems with anisotrc
scattering. In such a case, the right-hand side of the transport equation should be
transformed by means of moments of the transport solution and set of stable functior
according to methodology developed in the QD method [1, 12, 15].

In one-dimensional geometry the discretized low-order equations od-thveighted
methods can be easily solved. In case of multidimensional geometries, efficient itera
methods must be used. Krylov subspace methods are good candidates for solving t
equations. This is an issue for future research.

The present paper addresses the stability analysis of the proposed parametric fami
iteration methods for solving the transport equation. In further research we plan to cons
various aspects of approximation of high- and low-order equations and approaches
efficient solving the low-order problem of thkeWN methods. Itis interesting to consider a
parametrized family of nonlinear and linear methods with a different set of weight functiot
for examplew () = 1+ ¢|u|%, wherea and¢ are constants. Preliminary investigations
have shown that the method with= 1 and¢ = +/3 has low-order equations that result
in the diffusion equation in case of a nearly isotropic angular flux, i.e., in the diffusic
limit. This particular method possesses some other good features as well, which nr
approximation of low-order equations easier. Another set of weight functions that deser
to be studied is general polynomialsof
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